
CIKM AnalytiCup 2017 – Lazada Product TitleQuality Challenge:
Constructing Features for a Diversified Ensemble of Classifiers

Massimo Nicosia⋄ and Alessandro Moschitti
⋄DISI, University of Trento, 38123 Povo (TN), Italy

Qatar Computing Research Institute, HBKU, 5825, Doha, Qatar
{mnicosia,amoschitti}@gmail.com

ABSTRACT
Feature engineering and stacked generalization are at the core
of our model. Several classifiers are trained to produce first level
predictions, which are fed with the original features to selected
classifiers. Second level predictions are simply averaged to obtain
the final class probabilities. Our submission ranked #9, despite the
simplicity of the model.

1 INTRODUCTION
E-commerce web sites contain product pages which are directly
created by product sellers. Sometimes the latter may write titles and
descriptions which are full of keywords and thus result unnatural,
in an attempt to game the e-commerce search engine. The Lazada
Product Title Quality Challenge consists in helping Lazada to detect
rogue listings by building a classifier that scores product titles and
pages according to two criteria: clarity and conciseness.

A product page is clear if, in a short time, the user can under-
stand the title and the product, together with its key attributes.
The page is concise if it is short, and contains all the necessary
information. The task of the competition participants is to build a
model capable of producing a probability value associated to the
clarity and conciseness labels. Submissions are evaluated using the
Root-Mean-Square Error (RMSE), defined as follows:

RMSE =
√

1
n
∑n
i=1 (yi − ŷi)

2

Submissions are then ranked by averaging the RMSE computed
on the two labels:

RMSEoverall =
RMSEconciseness+RMSEclar ity

2

2 RELATEDWORK
The automatic classification of the quality of textual content has
received an increased amount of attention, especially after the
explosion of user-generated content.

Spam detection is probably the most popular and ancient task [2,
4]. It is, as all the task described in this section, an instance of Text
Classification. In particular, the goal is to detect email or web pages
that contain unsolicited commercial content, or may be deceptive
for the reader. The majority of spam detection (and text classifica-
tion) approaches transform the sequence of words in a document
into features, such as word counts, that can be used in a classifier.

Bad content can also comprehend bad product reviews [5, 6]
and bad forum posts [8]. In addition to words, the cited pieces of
work try to model an higher level notion of readability. This goal
is achieved by designing specific metrics that should capture the
level of formality or difficulty of textual content.

A more recent problem is clickbaiting: messages that circulate in
social media, and are forged to spark curiosity and to elicit a click
from the user. Automatic attempts to clickbait classification try to
model the syntactic and semantic features of the content [1].

All the previous tasks may benefit from signals not directly com-
ing from the content to classify. For example, in spam detection,
the IP address or the email of the sender are very discriminative
features. Reviews or forum posts are often associated to specific au-
thors, and profiling the authors usually improves the classification
accuracy. Clickbait titles are often linked to web pages containing
the complete article, which can also be analyzed and used as a
source of features. In the Lazada Product Title Quality Challenge,
similar data is not included and cannot be easily modelled.

3 METHODOLOGY
The development of our model can be divided in two key parts:
feature engineering and the construction of the ensemble classifier.

3.1 Feature engineering
Product titles are preprocessed to obtain a cleaned version: we re-
move a given set of punctuation characters, and we apply a very
light product name normalization. The original titles are also pro-
cessed with the spaCy 1 tokenizer and tagger, to obtain tokens
and part-of-speech tags. The majority of features is extracted from
product titles.

Engineered features. We briefly describe the features used in
our model, indicating with (r) when we also compute the feature
ratio, e.g., how many times a specific class of characters or words
appear in the title, with respect to the total number of characters
or words.

From the original unprocessed titles we extract:
• the number of characters;
• the number of words;
• the number of uppercase, lowercase, non alphanumeric, nu-
meric characters (r);
• a boolean feature indicating the presence of number, paren-
theses, plus or minus symbols;
• a boolean feature indicating if the title is exactly contained
in the description;
• the spam score computed with the antispam2 package.

From the cleaned title we extract:
• the number of occurrences of the most repeated word;

1http://spacy.io
2https://pypi.python.org/pypi/antispam/0.1

• the number of words that are repeated (r);
• the number of words matching a color, a buzzword, or a
word in an English dictionary3 (r);
• the sum of the occurrences of repeated words (r);
• the average number of word characters.

In addition, we extract from the title a set of readability fea-
tures [6] through the textstatistics4 package:
• the number of syllables;
• the average number of syllables per word;
• the count of polysyllable words;
• the Flesh Reading Ease score;
• the Flesh Kinkaid Grade level;
• the Smog index;
• the automated readability index;
• the Linsear Write Formula score;
• the number of difficult words (words which are not contained
in a list of easy words);
• the proportion of long words.

From the tokenized titles, we extract the ratio of words which
appear only once in the training set. Then, for a subset of count
features, we compute their counts divided by the maximum count
value observed in the training set, the deviation from the mean, the
deviation from the median, the difference with the maximum.

From the description, we extract a set of boolean features cap-
turing the seller effort in formatting the text:
• the presence of html lists (presence of and tags);
• the presence of a style tag;
• the presence of the ampersand HTML entity.

Additional features include the logarithm of the price, a binary
feature indicating expensive items, and the proportion of each part-
of-speech tag which appears in the title.

Categorical features. Each listing contains a subset of fields that
we treat as categorical features, namely:
• the country where the product is marketed;
• three hierarchical product categories;
• the product type.

Word features. We extract word counts from the lowercased titles.
More specifically, we compute the TFIDF of unigrams considering:
words, lemmas and stems obtained with (i) the Porter Stemmer, (ii)
the Snowball stemmer. Our intention is to learn base classifiers on
various word forms, in order to capture different views of the text,
and enhance diversity in the final ensemble.

3.2 Ensemble learning
In this section, we describe the base classifiers that we trained on
our features, we explain how we tuned the model hyperparameters,
and how we built the final ensemble.

Base classifiers. We select a set of base classifiers by measuring
their performance in a 5-fold cross-validation setting, and by con-
sidering their diversity. We cross-validate hyperparameters and
3https://github.com/dwyl/english-words
4https://pypi.python.org/pypi/textstat

perform feature selection (we add a feature to the final set of fea-
tures, if it improves the cross-validation performance) for each
target label, to obtain:
• a Logistic Regression classifier with the regularization term
C set to 1.0;
• an ElasticNet model, clamping predictions in the [0,1] range,
and with the term C set to 1.0 and alpha set to 0.0001;
• XGBoost [3], a Gradient Boosting Classifier, using 50 trees,
a learning rate of 0.1, and a maximum tree depth of 10;
• LightGBM5, another Gradient Boosting Classifier package.

The Logistic Regression and ElasticNet implementations are
from the scikit-learn package [7].

Mixing diverse models such as linear and decision tree classi-
fiers is common practice when constructing ensembles, and it is at
the core of stacked generalization [9]. Diverse model may produce
different predictions, and make orthogonal errors. In this case, an
ensemble model may correct such errors, if it is able to learn when
one of the model fails, and the other succeed.

First level predictions. We train each classifier on each target
label, and we use the entire training set to obtain predictions on
the test data. To obtain correlated predictions on the training set,
we compute the out-of-fold output of each classifier. This means
that we split the training set into 50 folds, we train each model on
49 folds, and we classify the examples contained in the remaining
fold to obtain the associated predictions.

Second level predictions. We perform stacked generalization by
augmenting the original feature set for the training and test data
with the out-of-fold and test predictions from the base classifiers.
Intuitively, this process should also pick up some correlation be-
tween conciseness and clarity. These concepts share similar traits,
so it may be useful for a model trained on conciseness targets, to
know what another model thinks about the clarity of the same
examples (and viceversa).

We retrain the same classifiers used to produce first level predic-
tions on the agumented feature set, and we apply them on the test
set. The final set of predictions is produced by simply averaging
the probabilities of each target label.

Computational resources. All the experiments are carried out
on a laptop with a 2.50GHz Quad-Core CPU, 16 GB of RAM, and an
Nvidia GTX860M GPU with 2 GB of memory. The classifiers with
the highest training time are XGBoost and the neural networks,
especially for the conciseness label. The training time is dominated,
as expected, by producing the out-of-fold predictions: 40 minutes
for XGboost and the convolutional network, and 4 hours for the
recurrent network. The feature computation time was instead dom-
inated by producing the TFIDF counts. For this reason, it was vital
to implement a caching mechanism to store the features for each
partition extracted from the datasets. We are referring to the entire
training and test data, plus each training partition from the cross-
validation process. Caching count (and other) features, saved us a
considerable amount of computation time across iterations of the
models, enabling us to experiment much faster.
5https://github.com/Microsoft/LightGBM

2

4 LESSONS LEARNED
In this section, we itemize some general insights and thoughts on
the models, and the competition.

Classifiers not included in the ensemble. We tried several clas-
sifiers in the hope of bringing diverse predictions and thus diverse
errors into the ensemble. We evaluated Randomized Decision Trees,
a Lasso model fit with Least Angle Regression, Random Forests, a
Linear SVM calibrated with the Platt method to obtain probabili-
ties, and a K-Nearest Neighbours classifier. Interestingly, we also
trained a convolutional neural network on the clarity labels, and a
recurrent neural network on the conciseness label. Both networks
used as input only GloVe word embeddings. The predictions of such
models did not help in the final ensemble.

A third-level classifier. Averaging the predictions for the second-
level classifiers may be sub-optimal. Ideally, an additional simple
model could learn how to combine those predictions and give better
results. We tried training a meta-classifier on the second level pre-
dictions, applying again the out-of-fold method. This approach did
not give the desired outcome, and performed similarly to averaging.

Multipleword surface forms. Althoughwe computed base classi-
fier predictions for a diverse set of TFIDF counts (on words, lemmas,
stems), we ended up using only Porter stems. This particular choice
gave us the better cross-validation performance. Adding signals
from the counts on other surface forms (adding out-of-fold pre-
dictions in the second level classifier) did not improve the final
outcome. This was surprising, since this technique helps most of
the time.

Neural networks. The inclusion of neural networks into the fi-
nal ensemble did not have the desired effect. Probably, more time
should have been allocated into tuning the network architectures,
and into incorporating the hand-engineered features in addition to
word embeddings.

Model diversity. The most noticeable improvements (other than
the feature engineering effort) were obtained by combining the
predictions of different types of classifiers.

Domain. We modelled few aspects of the domain language of
product descriptions (product features, names, brands, etc.), and
most of the time with indirect features. Probably, more effort should
have been spent into extracting a semantic view of the product
title, i.e., associating a semantic interpretation to each token. This
would have reduced the vocabulary sparsity of the product domain.
We believe that incorporating a notion of product/brand popularity
into the model would have also been helpful.

The language of titles, and inter-annotator agreement. Most
of the times, titles consisted in a set of keywords, so it was prob-
lematic to apply natural language processing techniques which
rely on syntax. In addition to that, annotations appeared to be
quite subjective in many cases. It would be interesting to know the
inter-annotator agreement on the competition dataset.

Model Overall RMSE

a 0.2859
b 0.2733
c 0.2712
d 0.2669

Table 1: Models and overall RMSEs on the development set.

5 ANALYSIS
In this section, we describe how the scores evolved over time. Table 1
shows the models, identified by a letter, and the corresponding
overall RMSE, obtained by averaging the RMSE on the clarity and
the conciseness target labels.
Model (a). Our first entry, a Logistic Regression model with few
features: TFIDF unigram scores and simple character/word features.
Model (b). The first ensemble model, with XGBoost and Logistic
Regression as base learners. Regarding second level predictions,
a Logistic Regression model was used for obtaining clarity labels,
and an XGBoost model for obtaining conciseness labels.
Model (c). Ensemble model, with tuned first level XGBoost classi-
fiers, and tuned features.
Model (d). Ensemble model, with some more feature engineering
and selection. In addition to that, this time we added the ElasticNet
model, and we averaged the second level predictions.

The main reasons for the increase in performance were, apart
from the constant feature engineering and selection, the introduc-
tion of diverse classifiers in the ensemble, model tuning, and the
averaging of second level predictions.

In the final ensemble on the test dataset, we included an addi-
tional gradient boosting model, LightGBM. Then, instead of just
averaging the predictions, we weighted the 4 models differently:
the two gradient boosting models had a weight of 0.3, while the
two linear models had a weight of 0.2.

Our final ranking on the testing leaderboard was #9, with an
overall RMSE of 0.2908.

6 CONCLUSION
In this report, we described our entry in the CIKM AnalytiCup 2017
Lazada Product Title Quality Challenge. Our approach consisted in
designing general text classification features, and features specific
to the problem; then, we trained a diverse set of base classifiers that
we used in a stacked generalization fashion. Second level predictions
from the same classifiers were averaged to obtain the final class
probablities.

Possibile future directions for improving the model could include
(i) the use of external data, from Lazada, or from web sites such as
Amazon; (ii) modelling the neighborhood of a title, using distance
measures from similar instances or rankingmethods; (iii) addressing
the sparsity of the vocabulary obtained from the listings. More
specifically, a way to map each word into a category would be
beneficial for a better understanding of the features of a title. For
example, some time could be spent to manually label tokens into
categories such as product features, product serial numbers, brand
names, product measures/sizes, and so on. This way, a tagger could
be trained on a subset of the data, and then used to tag the titles.
The predicted categories would then be used as a source of features.

3

REFERENCES
[1] Prakhar Biyani, Kostas Tsioutsiouliklis, and John Blackmer. 2016. "8 Amazing

Secrets for Getting More Clicks": Detecting Clickbaits in News Streams Using
Article Informality. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI’16). AAAI Press, 94–100. http://dl.acm.org/citation.cfm?id=
3015812.3015827

[2] Xavier Carreras, LluÃŋs Marquez, and Jordi Girona Salgado. 2001. Boosting
Trees for Anti-Spam Email Filtering. (2001).

[3] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
785–794. https://doi.org/10.1145/2939672.2939785

[4] William W Cohen et al. [n. d.]. Learning rules that classify e-mail.
[5] Nitin Jindal and Bing Liu. 2007. Review Spam Detection. In Proceedings of the

16th International Conference on World Wide Web (WWW ’07). ACM, New York,
NY, USA, 1189–1190. https://doi.org/10.1145/1242572.1242759

[6] Michael P. O’Mahony and Barry Smyth. 2010. Using Readability Tests to Predict
Helpful Product Reviews. In Adaptivity, Personalization and Fusion of Hetero-
geneous Information (RIAO ’10). LE CENTRE DE HAUTES ETUDES INTERNA-
TIONALESD’INFORMATIQUEDOCUMENTAIRE, Paris, France, France, 164–167.
http://dl.acm.org/citation.cfm?id=1937055.1937097

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[8] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, Michele Lanza, and David
Fullerton. 2014. Improving low quality stack overflow post detection. In Software
Maintenance and Evolution (ICSME), 2014 IEEE International Conference on. IEEE,
541–544.

[9] David H. Wolpert. 1992. Stacked Generalization. Neural Networks 5 (1992),
241–259.

4

http://dl.acm.org/citation.cfm?id=3015812.3015827
http://dl.acm.org/citation.cfm?id=3015812.3015827
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/1242572.1242759
http://dl.acm.org/citation.cfm?id=1937055.1937097

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Feature engineering
	3.2 Ensemble learning

	4 Lessons Learned
	5 Analysis
	6 Conclusion
	References

