# Machine Learning @ Amazon

### Rajeev Rastogi

Director, Machine Learning



## Key Takeaways

- ML is enabling smart ecommerce
  - Product recommendations, demand forecasting, search, classification, matching, ...
- Learning semantically rich representations critical for many current tasks and future AI applications
  - Online advertising, product search, question answering, product recommendations, fake reviews detection
  - Conversational systems, video metadata generation, content summarization
- Several techniques for learning representations
  - Deep Learning, Probabilistic Graphical Models, Tensor Decomposition
  - Leverage diverse signals/data

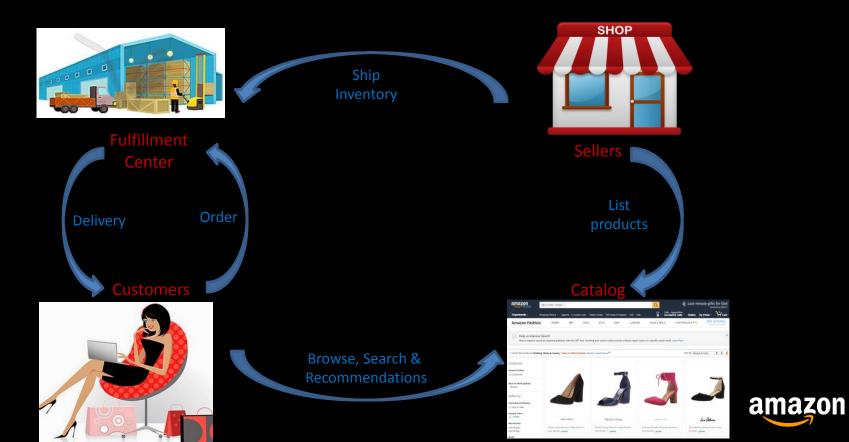


## Outline

- Applications of ML @ Amazon
- Question answering
- Product size recommendations



### Amazon Marketplace



## Using ML to Address Top Business Priorities

- Increasing product selection
- Lowering prices
- Reducing delivery times
- Eliminating friction
- Maintaining customer trust



## Numerous ML Applications



### **Product Demand Forecasting**

#### Problem

• Given past sales of a product in every region of the world, predict regional demand up to one year into the future





### **Product Demand Forecasting**

#### Problem

• Given past sales of a product in every region of the world, predict regional demand up to one year into the future

#### Challenges

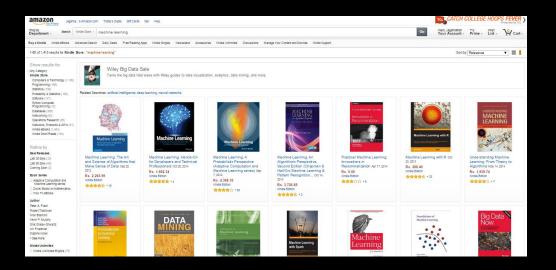
- Scale: Hundreds of millions of products in Amazon catalog!
- New products: No past demand!
- Sparsity: Huge skew many products sell very few items
- Seasonal: Demand for some products exhibits seasonal patterns
- Demand spikes: Huge variation due to external events
- **Distributions**: Future is uncertain → predictions must be distributions



### **Product Search**

#### Problem

• Given a partial user query, find the relevant products to display to user in search results





### **Product Search**

#### Problem

• Given a partial user query, find the relevant products to display to user in search results

#### Challenges

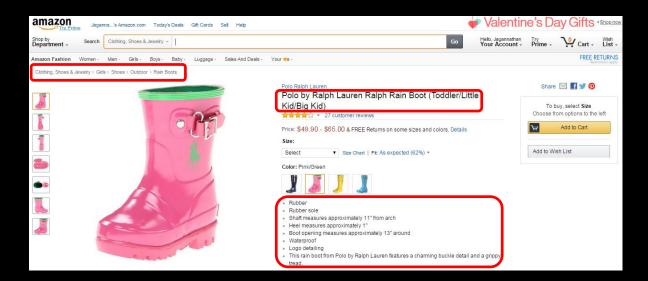
- Scale: Hundreds of millions of products in Amazon catalog
- **Real-Time Prediction**: Search requires low-latency (<40ms)
- **Query analysis:** Understand semantics, identify phrases, classify into product category (e.g. red apple iphone vs red apples)
- Intent detection: Is customer researching product or looking to buy product
- Knowledge Graph: Structured entity data + related products in response to search queries



### **Product Classification**

#### Problem

• Given a product description from a seller, map it to the appropriate leaf node in product taxonomy





### **Product Classification**

#### Problem

• Given a product description from a seller, map it to the appropriate leaf node in product taxonomy

#### Challenges

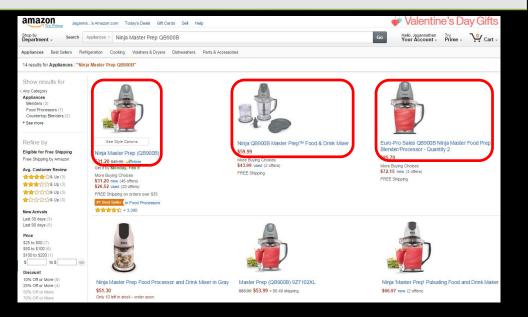
- Scale: Hundreds of millions of products and thousands of classes in product taxonomy
- Products vs Accessories: Hard to distinguish between products and its accessories (e.g. laptop vs laptop battery)
- Incorrect/Missing data: Some attribute values may be wrong, missing or inadequate (e.g. short titles)
- Training data quality: Examples may be wrongly labeled, some classes may have very few examples



## **Product Matching**

#### Problem

• Given product information (title, description, price, etc.), find duplicate product listings in Amazon catalog





## **Product Matching**

#### Problem

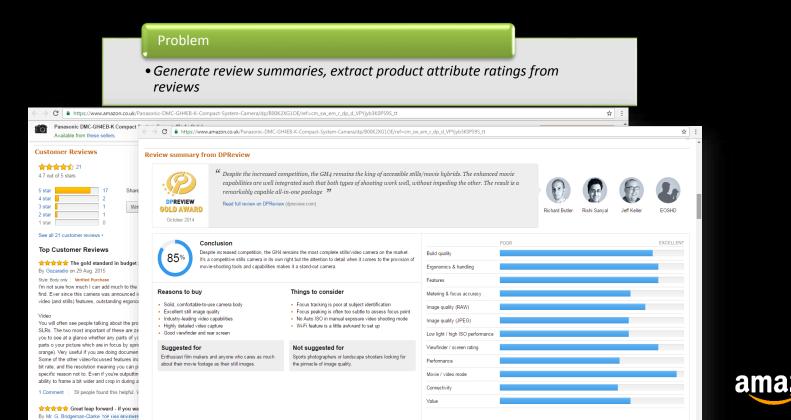
• Given product information (title, description, price, etc.), find duplicate product listings in Amazon catalog

#### Challenges

- High-Precision requirement: Incorrect matching leads to poor user experience
- Variations: Some variations (e.g., color) are insignificant while others (e.g., movie sequels) are not
- Diverse formats: Attribute values for the same product may be represented differently
- Incorrect/Missing Data: Some attribute values may be missing or wrong in product descriptions



### **Information Extraction from Reviews**



### Information Extraction from Reviews

#### Problem

• Generate review summaries, extract product attribute ratings from reviews

#### Challenges

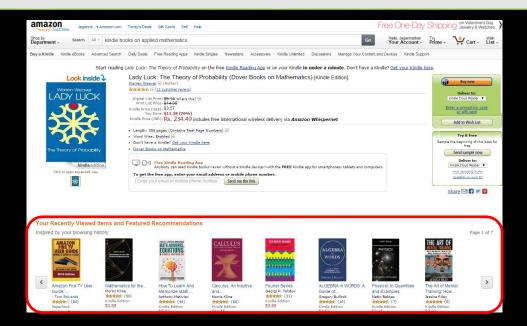
- Diverse attributes: Product attributes may vary across different categories
- Synonyms: Different terms may refer to same attribute (sound, audio)
- Informal style: User reviews have an informal linguistic style
- Stylistic variations: Linguistic style varies between users
- Sentiment analysis: Gauging sentiment may require deep parsing of sentences



### **Product Recommendations**

#### Problem

• Discover products by recommending the right product, to the right customer, in the right place, at the right time





### Drones

Problem

• Safely deliver packages to customers homes within 30 minutes using drones





## Robotics

Problem

• Automate picking, stowing and transport of products in Amazon Fulfillment Centers

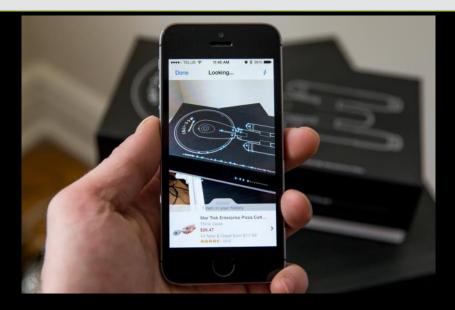




## Visual Search

### Problem

• Retrieve images from the Amazon catalog that are visually similar to a given product





## Voice Recognition

#### Problem

• Provide a voice interface to shop for products, perform tasks, answer questions, and carry out conversations

### The Amazon Echo family









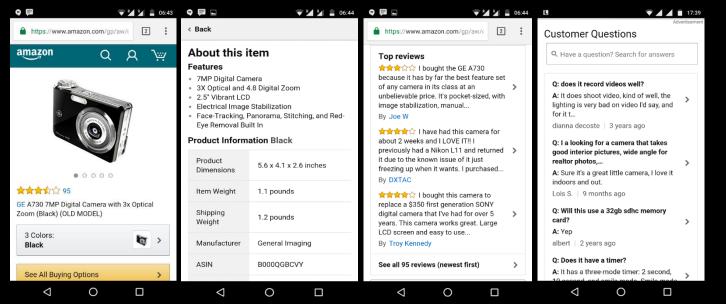
## Outline

- Applications of ML @ Amazon
- Question answering
- Product size recommendations



## Amazon Product Pages

• Amazon product pages contain a wealth of information





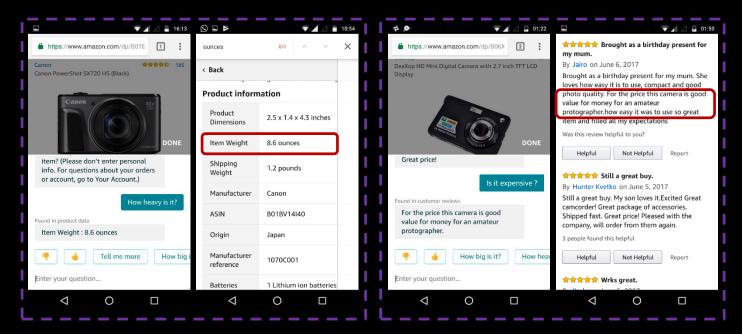
## **Question & Answering Bot**

• Question answering interface to make it easy for users to find information on product page

| <b>♀ ₽</b>                | V 🖌 🖥 | 06:43         | 9 🖻 🗖                                                                                                                                                                                                                                                                                                  |            | マ 🎽 🎽 🧰 06:44 | Q 🖻 🗆                                                                                                                                                                                                                                                                                                                                                                                                          | ▼ 14 14           | 06:44                                                                                                                                                                                                                                                                                                                         |                                                                  | 17:39        |
|---------------------------|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------|
| https://www.amazon.com/gp | /aw/c | 2             | < Back                                                                                                                                                                                                                                                                                                 |            |               | https://www.am                                                                                                                                                                                                                                                                                                                                                                                                 | azon.com/gp/aw/(  | 2 :                                                                                                                                                                                                                                                                                                                           | Customer Questions                                               | Advertisemer |
| amazon Q                  | А     | <u>ک</u> ظ    | About this item                                                                                                                                                                                                                                                                                        |            |               | Top reviews                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                               | Q Have a question? Search for ans                                | wers         |
|                           |       |               | <ul> <li>7MP Digital Camera</li> <li>3X Optical and 4.8 Digital Zoom</li> <li>2.5" Vibrant LCD</li> <li>Electrical Image Stabilization</li> <li>Face-Tracking, Panorama, Stitching, and Red-Eye Removal Built In</li> <li>Product Information Black</li> <li>Product 5.6 x 4.1 x 2.6 inches</li> </ul> |            |               | ★★★☆☆ I bought the GE A730     because it has by far the best feature set     of any camera in its class at an     unbelievable price. It's pocket-sized, with     image stabilization, manual By Joe W     ★★★★☆ I have had this camera for     about 2 weeks and I LOVE IT!!     previously had a Nikon L11 and returned     it due to the known issue of it just     freezing up when it wants. I purchased | th                | Q: does it record videos well?<br>A: It does shoot video, kind of well, the<br>lighting is very bad on video l'd say, and<br>for it t<br>dianna decoste   3 years ago<br>Q: I a looking for a camera that takes<br>good interior pictures, wide angle for<br>realtor photos,<br>A: Sure it's a great little camera, I love it | and ses<br>for                                                   |              |
|                           |       |               | Item Weight                                                                                                                                                                                                                                                                                            | 1.1 pounds |               | By DXTAC<br>★★★★☆ I bought this camera to                                                                                                                                                                                                                                                                                                                                                                      |                   | indoors and out.<br>Lois S.   9 months ago                                                                                                                                                                                                                                                                                    |                                                                  |              |
|                           |       | tical         | Shipping<br>Weight                                                                                                                                                                                                                                                                                     | 1.2 pounds |               | replace a \$350 first generation SONY<br>digital camera that I've had for over 5<br>years. This camera works great. Large<br>LCD screen and easy to use                                                                                                                                                                                                                                                        |                   | >                                                                                                                                                                                                                                                                                                                             | Q: Will this use a 32gb sdhc memo<br>card?<br>A: Yep             | y<br>>       |
|                           |       | rch this page | Manufacturer                                                                                                                                                                                                                                                                                           | General Im | aging         |                                                                                                                                                                                                                                                                                                                                                                                                                | By Troy Kennedy   |                                                                                                                                                                                                                                                                                                                               | albert   2 years ago                                             |              |
| See All Buying Options    |       | >             | ASIN                                                                                                                                                                                                                                                                                                   | B000QGBC   | VY            | See all 95 review                                                                                                                                                                                                                                                                                                                                                                                              | vs (newest first) | >                                                                                                                                                                                                                                                                                                                             | Q: Does it have a timer?<br>A: It has a three-mode timer: 2 sect | ond, >       |
| 0                         | C     | 3             | $\bigtriangledown$                                                                                                                                                                                                                                                                                     | 0          |               | $\bigtriangledown$                                                                                                                                                                                                                                                                                                                                                                                             | 0 0               |                                                                                                                                                                                                                                                                                                                               |                                                                  |              |

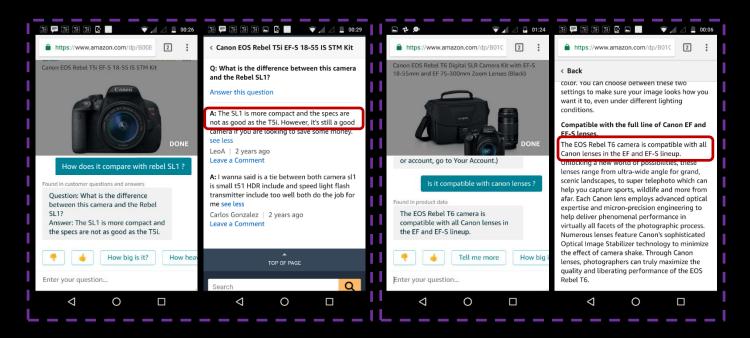


### **Product Feature Questions**



amazon

## Product Comparison/Compatibility Questions



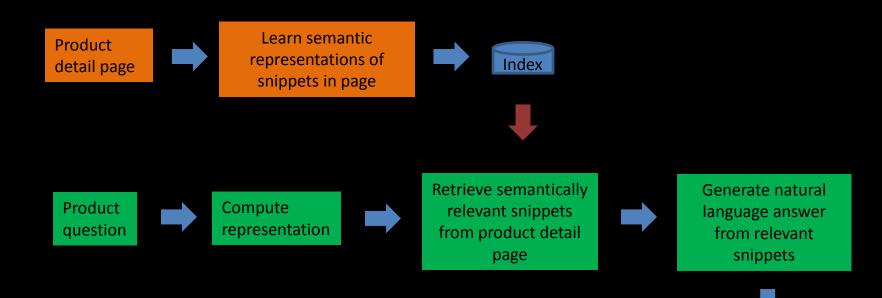


## **Key Challenges**

- Question understanding
  - "What is ISO?" vs "What is the ISO [of this camera]?"
- Semantic matching
  - "cost", "price", "bang for buck", "expensive", "cheap"
- Natural language answer generation
  - e.g. "This is great value for money" for question "Is this expensive?"
- High precision (>90%) requirement
- Data availability
  - "Will this suitcase fit in the overhead of an airplane?"
- Data quality
  - "Dimensions: 1x1x1 inches" for the question "How big is it" on a "Tripod page"



## **Question Answering System Architecture**

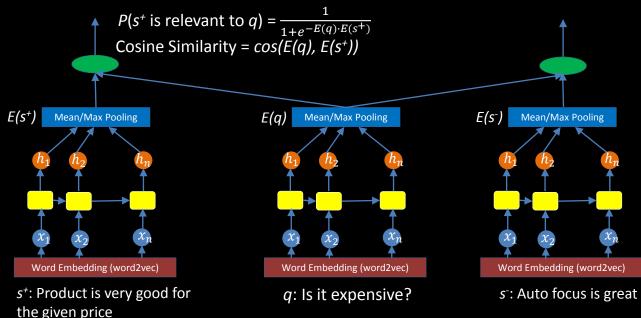


Answer



## Learning Semantically Rich Representations

- Training examples: <question (q), relevant snippet (s<sup>+</sup>), irrelevant snippet (s<sup>-</sup>)> triples
- Triplet network





## **Results for Different Loss Functions**

- Learn question and snippet representations to minimize the following loss functions:
  - $\log \log \left[ \text{EMNLP 2015} \right] \frac{1}{1 + e^{-E(q) \cdot E(s^+)}} \log \frac{1}{1 + e^{E(q) \cdot E(s^-)}}$
  - Siamese loss [Wang et al. 2014]  $\max\{0, M - (\cos(E(q), E(s^+)) - \cos(E(q), E(s^-)))\}$
  - Twin loss

 $\max\{0, M_1 - \cos(E(q), E(s^+))\} + \max\{0, \cos(E(q), E(s^-)) - M_2\}$ 

- Metric: Precision at rank 1 (P@r1)
- Results:

| Loss function | Baseline | Log loss | Siamese loss | Twin loss |
|---------------|----------|----------|--------------|-----------|
| P@r1          | 56.8%    | 84.6%    | 96.1%        | 97.04%    |



[Wang et al 2014] Learning fine-grained image similarity with deep ranking, CVPR 2014.

## **Qualitative Results**

| Question                                                      | Matching Snippet                                                                     |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Is this camera good for pictures at a basketball game?        | Works great for <b>sports</b> photography                                            |
| What is the price ?                                           | This item <b>costs</b> \$100.00. To see tax and shipping, add to cart                |
| How big is it?                                                | Item <b>dimensions</b> : 3 x 3.28 x 4.37 inches                                      |
| How good is stabilization?                                    | EVERY image came out <b>blurry</b> (and I held the camera still in a well-lit room). |
| Will it fit on Olympus air?                                   | Fits very well the Olympus Air OA-01                                                 |
| How much weight can it hold?                                  | Item weight: 2.2 pounds                                                              |
| What is the color of the paper on which the photo is printed? | the color of the camera and the pictures are great.                                  |



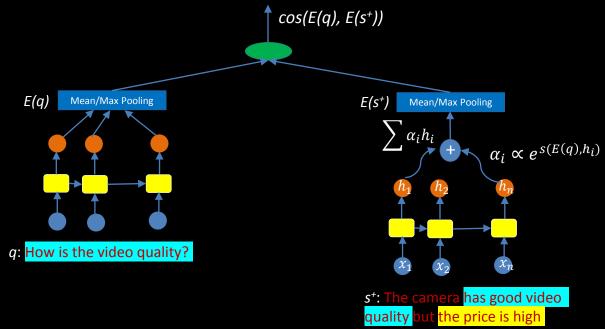
## **Training Dataset Generation**

- Raw Data
  - Corpus of Amazon customer reviews, product descriptions, community QA
  - Total size is 147.6M records comprising 3.68M word tokens
  - Trained word2vec embeddings of 200 dimensions
- Training examples: triplets (q, s<sup>+</sup>, s<sup>-</sup>)
  - Attribute selection: mined attributes using term frequency (~130 for cameras)
    - price, image stabilization, zoom, resolution, etc.
  - Question templates (*q*) for attributes
    - price : "what's the price", "what is the cost", etc.
  - Relevant snippets ( $s^+$ ): defined set of matching words
    - price: "price", "expensive", "cheap", "worth", "money", "pricey", "investment", "buck", "cheaply"
  - Irrelevant snippets (s<sup>-</sup>): used negative sampling
  - Over 10M triplets



## Learning Representations with Attention

• Only consider relevant portions of snippets when learning representations [Bahdanau et al. 2015]





[Bahdanau et al. 2015] Neural machine translation by jointly learning to align and translate, ICLR 2015.

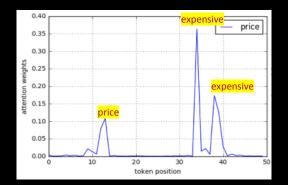
## Highlighting Words with High Attention Weights

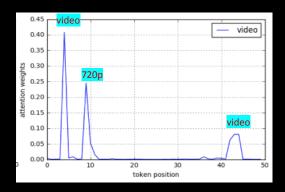
#### **Review Statement:**

The package is good video quality is good for 720p but the price is excellent for what you get - especially if you do not want all the whistles and bells of the more expensive gopro 2-4x more expensive and the quality of video is superb and great.

#### **Questions:**

Question1: What is the price? Question2: How good is the video?

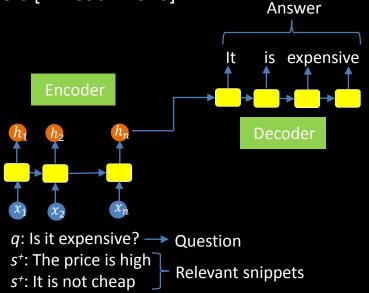






## **Generating Natural Language Answers**

• Use sequence-to-sequence encoder-decoder model to generate final answers [Yin et al. 2016]





[Yin et al. 2016] Neural generative question answering. IJCAI 2016.

## Outline

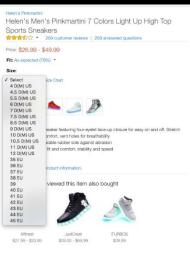
- Applications of ML @ Amazon
- Question answering
- Product size recommendations



### Size Recommendation Problem

• Given a customer and product, recommend product size that would best fit the customer







## Motivation

- No standardization of sizes across brands and locales for product categories such as shoes and apparel
- This leads to users making incorrect purchases, and then returning products
- Products belonging to shoe and apparel categories have high return rates due to fit issues
- Example:
  - Reebok size mapping convention: 6 = 15cm, 7 = 17cm, 8 = 21cm
  - Nike size mapping convention: 6 = 16cm, 7 = 18cm, 8 = 22cm



# **Key Challenges**

- Scale: hundreds of millions of customers and products
- Data sparsity: bulk of users/products have very few purchases
- Cold start scenarios: new customers/products
  - User features: demographics (age, gender), location
  - Product features: catalog size, title, brand, product type
- Multiple personas: each customer *i* may involve multiple personas
  - E.g., family members sharing an account
  - Personas may have widely varying sizes



# Our Approach

- Learn true (latent) size for each customer, product
  - True size for customer corresponds to the physical size of the customer (for shoes, it would be the feet size)
  - True size for product corresponds to it's physical size
- Leverage past customer transactions T = {(i, j, y<sub>ii</sub>)}
  - y<sub>ii</sub> takes ordinal values {small, fit, large}

|            | Adidas (9) | Nike (8) | Reebok (8) | Nike (9) | Catalog size        |
|------------|------------|----------|------------|----------|---------------------|
| Customer 1 | large      |          | fit        | ?        |                     |
| Customer 2 |            | small    |            | fit      | Predict fit outcome |
| Customer 3 | fit        |          | small      | ?        |                     |
| Customer 4 |            | fit      |            | large    |                     |



# Our Approach (Contd)

- Notation
  - Latent size for customer *i*: *s*<sub>*i*</sub>
  - Latent size for product j: t<sub>i</sub>
  - Catalog size for product j: c<sub>i</sub>
- Model likelihood of fit as a function of the difference between customer and product latent sizes

$$P(y_{ij} = fit) \propto f(s_i - t_j)$$

• Recommend product *j* with highest fit likelihood  $P(y_{ij} = fit)$  to customer *i* 



# **Bayesian Modeling Benefits**

- Handles data sparsity by placing priors on latent size variables
- Models uncertainty in inferred latent sizes
  - Estimates posterior distribution of latent size variables
  - Fit probability is obtained by averaging over posterior size distribution
- Model can capture all the available data
  - Observations: transaction outcomes, customer and product features
  - Hidden variables: latent sizes, customer personas
- Efficient techniques for approximating posterior distributions of latent size variables



# Intuition

• Transaction (*i*, *j*, *fit*)  $\rightarrow$  very likely that  $s_i$  and  $t_i$  are close

 $S_i$ 

• Transaction (*i*, *j*, *small*)  $\rightarrow$  very likely that  $s_i$  is much larger than  $t_i$ 

S:

• Transaction (*i*, *j*, *large*)  $\rightarrow$  very likely that  $s_i$  is much smaller than  $t_j$ 

t,

t,



### Data Likelihood

$$P(y_{ij} = small|s_i, t_j) = \frac{1}{1 + e^{-\alpha(s_i - t_j) + b_1}}$$

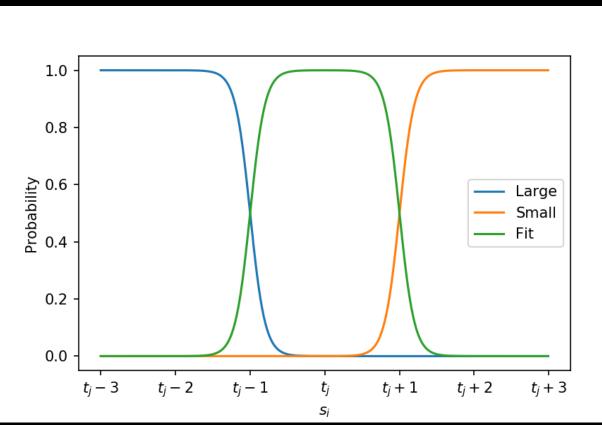
$$P(y_{ij} = fit|s_i, t_j) = \frac{1}{1 + e^{\alpha(s_i - t_j) - b_1}} \cdot \frac{1}{1 + e^{-\alpha(s_i - t_j) + b_2}}$$

$$P(y_{ij} = large|s_i, t_j) = \frac{1}{1 + e^{\alpha(s_i - t_j) - b_1}} \cdot \frac{1}{1 + e^{\alpha(s_i - t_j) - b_2}}$$



[Albert & Chib 1993] Bayesian analysis of binary and polytomous response data, JASA 1993.

#### Data Likelihood





#### **Generative Model**

for each customer *i*, draw latent size  $s_i \sim N(\mu_{i'} \sigma_s^2)$ for each product *j*, draw latent size  $t_j \sim N(c_{j'} \sigma_t^2)$ for each transaction (*i*, *j*,  $y_{ij}$ )  $\in T$ , select  $y_{ij} = small$  with probability  $P(y_{ij} = small|.)$ select  $y_{ij} = fit$  with probability  $P(y_{ij} = fit|.)$ select  $y_{ij} = large$  with probability  $P(y_{ij} = large|.)$ 



### **Bayesian Inference**

• Let  $\beta$  be the vector of latent sizes

$$\beta = (s_1, \dots, s_c, t_1, \dots, t_p, 1)^T$$

• Posterior distribution

$$P(\beta|T) \propto P(T|\beta) \cdot P(\beta)$$

$$\propto \prod_{\substack{(x,y) \in \mathbf{D} \\ 0/1}} \frac{e^{y\beta^T \cdot x}}{1 + e^{\beta^T \cdot x}} \cdot \prod_i N(s_i|\mu_i, \sigma_s) \cdot \prod_j N(t_j|c_j, \sigma_t)$$

$$(0, \dots, 0, \alpha, 0, \dots, 0, -\alpha, 0, \dots, 0, -b_1/b_2)^T$$

• Not available in closed form due to logistic likelihood terms and Normal priors



#### Polya-Gamma Augmentation [Polson et al. 2013]

- Introduce Polya-Gamma latent variable  $w \sim PG(0,1)$  for every  $(x, y) \in \mathbf{D}$
- Define the joint likelihood distribution

$$P(w, y | x, \beta) = \frac{1}{2} e^{\left(\left(y - \frac{1}{2}\right) \cdot \left(\beta^T \cdot x\right) - w \cdot \frac{\left(\beta^T \cdot x\right)^2}{2}\right)} \cdot P(w)$$

• In [Polson et al. 2013], it is shown that

$$\int_0^\infty P(w, y | \beta, x) dw = \frac{e^{y \beta^T \cdot x}}{1 + e^{\beta^T \cdot x}}$$



[Polson et al. 2013] Bayesian inference for logistic models using Polya-Gamma latent variables, JASA 2013.

### Polya-Gamma Augmentation (Contd)

• Let W be the set of Poly-Gamma variables w for  $(x, y) \in D$ 

$$P(\beta|\boldsymbol{D}) \propto \int P(W, \boldsymbol{D}|\beta) \cdot P(\beta) dW$$

• Approximate the augmented joint distribution  $P(W, \mathbf{D}|\beta) \cdot P(\beta)$ 

$$\prod_{(x,y)\in \boldsymbol{D}} \frac{1}{2} e^{\left(\left(y-\frac{1}{2}\right)\cdot\left(\beta^{T}\cdot x\right)-w\cdot\frac{\left(\beta^{T}\cdot x\right)^{2}}{2}\right)} \cdot P(w) \cdot \prod_{i} N(s_{i}|\mu_{i},\sigma_{s}) \cdot \prod_{j} N(t_{j}|c_{j},\sigma_{t})$$



## **Gibbs Sampling Algorithm**

- Conditional distribution of  $w_i$   $P(w_i|\beta, \mathbf{D}) \propto e^{-w_i \frac{(\beta^T \cdot x_i)^2}{2}} P(w_i)$  $= PG(w_i|1, \beta^T \cdot x_i)$
- Conditional distribution for  $\beta_i$

$$P(\beta_j | \beta_{-j}, W, \mathbf{D}) \propto \prod_{(x_i, y_i) \in \mathbf{D}} \prod_{x_{ij} \neq 0} \frac{1}{2} e^{\left( \left( y_i - \frac{1}{2} \right) \cdot \left( \beta^T \cdot x_i \right) - w_i \cdot \frac{\left( \beta^T \cdot x_i \right)^2}{2} \right)} N(\beta_j | \mu_{\beta_j}, \sigma_{\beta_j})$$
$$= N(\beta_j | m_j, V_j)$$

$$m_{j} = V_{j} \left( \frac{\mu_{\beta_{j}}}{\sigma_{\beta_{j}}^{2}} + \sum_{(x_{i}, y_{i}) \in \mathbf{D}} \sum_{x_{ij} \neq 0} \left( (y_{i} - \frac{1}{2}) \cdot x_{ij} + w_{i} \cdot x_{ij} \cdot \sum_{l \neq j} \beta_{l} \cdot x_{il} \right) \right)$$
$$\frac{1}{V_{j}} = \frac{1}{\sigma_{\beta_{j}}^{2}} + \sum_{(x_{i}, y_{i}) \in \mathbf{D}} \sum_{x_{ij} \neq 0} w_{i} \cdot x_{ij}^{2}$$



### **Predictive Distribution**

- Let *r* samples be drawn from the posterior of  $\beta$
- Let the *l*<sup>th</sup> sample be  $\beta^l = (s_1^l, \dots, s_c^l, t_1^l, \dots, t_p^l)$

$$P(y_{ij} = fit | \boldsymbol{D}) = \int P(y_{ij} = fit | \beta) \cdot P(\beta | \boldsymbol{D}) d\beta$$
$$\approx \frac{1}{r} \sum_{l=1}^{r} \frac{1}{1 + e^{\alpha \left(s_l^l - t_j^l\right) - b_1}} \cdot \frac{1}{1 + e^{-\alpha \left(s_l^l - t_j^l\right) + b_2}}$$



## **Experimental Results**

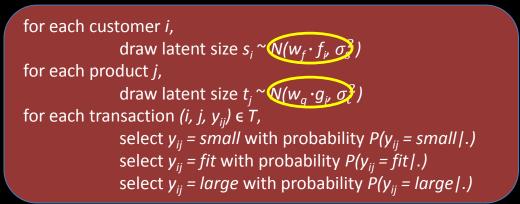
- Consider 6 real-life shoes datasets with between 10M and 33M transactions
- Baseline model
  - Product size  $t_j = c_j$
  - Customer size  $s_i$  = Average size of products purchased by customer
  - Logistic regression model with feature  $(s_i t_j)$  to predict outcome
- Bayesian Logit model
  - Predict outcome with highest probability
- Performance metric: weighted AUC
- Results (% improvements over baseline)

| Dataset  | Α     | В     | С    | D     | E     | F     |
|----------|-------|-------|------|-------|-------|-------|
| Bayesian | 17.71 | 18.28 | 19.7 | 25.78 | 20.22 | 19.42 |



#### Leveraging Customer and Product Features

- Means of latent size priors are obtained by performing regression over customer (f<sub>i</sub>) and product (g<sub>i</sub>) features [AC 2009]
- Generative model:



 Perform least squares regression to learn parameters w<sub>f</sub> and w<sub>g</sub> from customer and product size samples

[Agarwal & Chen 2009] Regression based latent factor models, KDD 2009.



### **Incorporating Customer Personas**

- Latent size for persona k of customer i: s<sub>ik</sub>
- Latent variable containing persona involved in transaction  $(i, j, y_{ii})$ :  $z_{ii}$
- Generative model:

for each customer *i*, draw persona distribution  $\theta_i \sim \text{Dir}(\alpha)$ for each persona *k* draw latent size  $s_{ik} \sim N(w_f \cdot f_{i'} \sigma_s^2)$ for each product *j*, draw latent size  $t_j \sim N(w_g \cdot g_{j'} \sigma_t^2)$ for each transaction (*i*, *j*,  $y_{ij}$ )  $\in T$ . draw persona  $z_{ij} \sim \text{Mult}(\theta_i)$ select  $y_{ij} = small,...$  with probability  $P(y_{ij} = small | z_{ij}),...$ 

• Gibbs Sampling algorithm can be extended to draw *z<sub>ij</sub>* samples



# Summary

- Learning semantically rich representations critical for future AI applications, several ML techniques
  - Conversational systems, content summarization, video metadata generation
  - Deep Learning, Probabilistic Models, Tensor Factorization
- Deep Learning to learn embeddings
  - Allows semantic matching between questions and snippets
  - Loss functions like Siamese loss that aim to maximize difference in class scores perform better
- **Probabilistic Graphical Models** to learn latent sizes
  - Priors handle data sparsity, prevent overfitting
  - Posteriors model uncertainty in data
  - Leverage all the available signals

